Standard Test Method for Unconfined Compressive Strength of Cohesive Soil

This standard is issued under the fixed designation D2166/D2166M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the unconfined compressive strength of cohesive soil in the intact, remolded, or reconstituted condition, using strain-controlled application of the axial load.

1.2 This test method provides an approximate value of the strength of cohesive soils in terms of total stresses.

1.3 This test method is applicable only to cohesive materials which will not expel or bleed water (water expelled from the soil due to deformation or compaction) during the loading portion of the test and which will retain intrinsic strength after removal of confining pressures, such as clays or cemented soils. Dry and crumbly soils, fissured or varved materials, silts, peats, and sands cannot be tested with this method to obtain valid unconfined compression strength values.

Note 1—The determination of the unconsolidated, undrained strength of cohesive soils with lateral confinement is covered by Test Method D2850.

1.4 This test method is not a substitute for Test Method D2850.

1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.

1.5.1 The procedures used to specify how data are collected/recorded and calculated in this test method are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this test method to consider significant digits used in analysis methods for engineering design.

1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.

1.6.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.

1.6.2 It is common practice in the engineering/construction profession to concurrently use pounds to represent both a unit of mass (lbm) and of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. As stated, this standard includes the gravitational system of inch-pound units and does not use/present the slug unit for mass. However, the use of balances or scales recording pounds of mass (lbm) or recording density in lbm/ft³ shall not be regarded as nonconformance with this standard.

1.7 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

2.1 ASTM Standards:

D653 Terminology Relating to Soil, Rock, and Contained Fluids
D854 Test Methods for Specific Gravity of Soil Solids by Water Pycnometer
D1587 Practice for Thin-Walled Tube Sampling of Soils for Geotechnical Purposes
D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
D2488 Practice for Description and Identification of Soils (Visual-Manual Procedure)

*A Summary of Changes section appears at the end of this standard

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States

For Annual Book of ASTM Standards volume information, refer to the standard’s Document Summary page on the ASTM website.
5.3 If tests on the same sample in both its intact and remolded states are performed, the sensitivity of the material can be determined. This method of determining sensitivity is suitable only for soils that can retain a stable specimen shape in the remolded state.

NOTE 2—For soils that will not retain a stable shape, a vane shear test or Test Method D2850 can be used to determine sensitivity.

NOTE 3—The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

6. Apparatus

6.1 Compression Device—The compression device may be a platform weighing scale equipped with a screw-jack-activated load yoke, a hydraulic loading device, or any other compression device with sufficient capacity and control to provide the rate of loading prescribed in 8.1. The compression device shall be capable of measuring the compressive stress to three significant digits at the maximum stress, or within 1 kPa [0.01 ton/ft²], whichever is larger.

6.2 Sample Extruder, capable of extruding the soil core from the sampling tube at a uniform rate in the same direction of travel in which the sample entered the tube, and with negligible disturbance of the sample. Conditions at the time of sample removal may dictate the direction of removal, but the principal concern is to reduce the potential for additional disturbance beyond that incurred during initial sampling.

6.3 Deformation Indicator—The deformation indicator shall be a dial indicator graduated to 0.03 mm [0.001 in.] or better and having a travel range of at least 20 % of the length of the test specimen, or some other measuring device, such as an electronic deformation measuring device, meeting these requirements.

6.4 Dial Comparator, or other suitable device, for measuring the physical dimensions of the specimen to within 0.1 % of the measured dimension.

NOTE 4—Vernier calipers are not recommended for soft specimens, which will deform as the calipers are applied on the specimen.

6.5 Timer—A timing device indicating the elapsed testing time to the nearest second shall be used for establishing the rate of strain application prescribed in 8.1.

6.6 Balance—The balance used to weigh specimens shall determine the mass of the specimen to within 0.1 % of its total mass.

6.7 Equipment, as specified in Test Method D2216.

6.8 Miscellaneous Apparatus, including specimen trimming and carving tools, remolding apparatus, water content cans, and data sheets, as required.

7. Preparation of Test Specimens

7.1 Specimen Size—Specimens shall have a minimum diameter of 30 mm [1.3 in.] and the largest particle contained within
the test specimen shall be smaller than one tenth of the specimen diameter. For specimens having a diameter of 72 mm [2.8 in.] or larger, the largest particle size shall be smaller than one sixth of the specimen diameter. If, after completion of a test on an intact specimen, it is found, based on visual observation, that larger particles than permitted are present, indicate this information in the remarks section of the report of test data (Note 5). The height-to-diameter ratio shall be between 2 and 2.5. Determine the average height and diameter of the test specimen using the apparatus specified in 6.4. Take a minimum of three height measurements (approximately 120° apart), and at least three diameter measurements at approximately the quarter points of the height.

Note 5—If large soil particles are found in the specimen after testing, a particle-size analysis performed in accordance with Test Method D6913 may be performed to confirm the visual observation and the results provided with the test report.

7.2 Intact Specimens—Prepare intact specimens from large samples or from samples secured in accordance with Practice D1587 and preserved and transported in accordance with the practices for Group C samples in Practices D4220. Tube specimens may be tested without trimming except for the squaring of ends, if conditions of the sample justify this procedure. Handle specimens carefully to reduce the potential for additional disturbance, changes in cross section, or loss of water content. If compression or any type of noticeable disturbance would be caused by the extrusion device, split the sample tube lengthwise or cut it off in small sections to facilitate removal of the specimen with minimal disturbance. Prepare carved specimens with minimal disturbance, and whenever possible, in a humidity-controlled room. Make every effort to prevent a change in water content of the soil. Specimens shall be of uniform circular cross section with ends perpendicular to the longitudinal axis of the specimen. When carving or trimming, remove any small pebbles or shells encountered. Carefully fill voids on the surface of the specimen with remolded soil obtained from the trimmings. When pebbles or crumbling result in excessive irregularity at the ends, cap the specimen with a minimum thickness of plaster of paris, hydrostone, or similar material. When sample condition permits, a vertical lathe that will accommodate the total sample may be used as an aid in carving the specimen to the required diameter. Where prevention of the development of appreciable capillary forces is deemed important, seal the specimen with a rubber membrane, thin plastic coatings, or with a coating of grease or sprayed plastic immediately after preparation and during the entire testing cycle. Determine the mass and dimensions of the test specimen. If the specimen is to be capped, its mass and dimensions should be determined before capping. If the entire test specimen is not to be used for determination of water content, secure a representative sample of trimmings for this purpose, placing them immediately in a covered container. The water content determination shall be performed in accordance with Test Method D2216. Initial dry density determination shall be performed in accordance with Test Method D7263.

7.3 Remolded Specimens—Specimens may be prepared either from a failed intact specimen or from a disturbed sample, providing it is representative of the failed intact specimen. In the case of failed intact specimens, wrap the material in a thin rubber membrane and work the material thoroughly with the fingers to assure complete remolding. Avoid entrapping air in the specimen. Exercise care to obtain a uniform density, to remold to the same void ratio as the intact specimen, and to preserve the natural water content of the soil. Form the disturbed material into a mold of circular cross section having dimensions meeting the requirements of 7.1. After removal from the mold, determine the mass and dimensions of the test specimens.

7.4 Reconstituted Specimens—Specimens shall be prepared to the predetermined water content and density prescribed by the individual assigning the test (Note 6). After a specimen is formed, trim the ends perpendicular to the longitudinal axis, remove from the mold, and determine the mass and dimensions of the test specimen.

Note 6—Experience indicates that it is difficult to compact, handle, and obtain valid results with specimens that have a degree of saturation that is greater than 90%.

8. Procedure

8.1 Place the specimen in the loading device so that it is centered on the bottom platen. Adjust the loading device carefully so that the upper platen just makes contact with the specimen. Zero the deformation indicator or record the initial reading of the electronic deformation device. Apply the load so as to produce an axial strain at a rate of ½ to 2 %/min. Record load, deformation, and time values at sufficient intervals to define the shape of the stress-strain curve (usually 10 to 15 points are sufficient). The rate of strain should be chosen so that the time to failure does not exceed about 15 min (Note 7). Continue loading until the load values decrease with increasing strain, or until 15 % strain is reached. Indicate the rate of strain in the report of the test data, as required in 10.3.6. Determine the water content of the test specimen using the entire specimen, unless representative trimmings are obtained for this purpose, as in the case of intact specimens. Indicate on the test report whether the water content sample was obtained before or after the shear test, as required in 10.3.1.

Note 7—Softer materials that will exhibit larger deformation at failure should be tested at a higher rate of strain. Conversely, stiff or brittle materials that will exhibit small deformations at failure should be tested at a lower rate of strain.

8.2 Make a sketch, or take a photo, of the test specimen at failure showing the slope angle of the failure surface if the angle is measurable.

8.3 A copy of an example data sheet is included in Appendix X1. Any data sheet can be used, provided the form contains all the required data.

9. Calculation

9.1 Calculate the axial strain, \(\varepsilon_1 \), to the nearest 0.1 \%, for a given applied load, as follows:

\[
\varepsilon_1 = \frac{\Delta L}{L_0} \times 100
\]

Copyright by ASTM Int'l (all rights reserved); Fri Mar 28 10:13:26 EDT 2014
Downloaded/printed by
Jerry Sayson (Terra Testing Inc) pursuant to License Agreement. No further reproductions authorized.
where:

\[\Delta L = \text{length change of specimen as read from deformation indicator or computed from the electronic device, mm [in.], and} \]

\[L_0 = \text{initial length of test specimen, mm [in.].} \]

9.2 Calculate the average cross-sectional area, \(A \), for a given applied load, as follows:

\[A = \frac{A_0}{\left(1 - \frac{\varepsilon_i}{100}\right)} \]

where:

\[A_0 = \text{initial average cross-sectional area of the specimen, mm}^2 \text{ [in.}^2\text{], and} \]

\[\varepsilon_i = \text{axial strain for the given load, expressed as a percent.} \]

9.3 Calculate the compressive stress, \(\sigma_c \), to three significant figures or nearest 1 kPa [0.01 ton/ft²], for a given applied load, as follows:

\[\sigma_c = \frac{P}{A} \]

where:

\[P = \text{given applied load, kN [lbf],} \]

\[A = \text{corresponding average cross-sectional area mm}^2 \text{ [in.}^2\text{].} \]

9.4 Graph—If desired, a graph showing the relationship between compressive stress (ordinate) and axial strain (abscissa) may be plotted. Select the maximum value of compressive stress, or the compressive stress at 15% axial strain, whichever is secured first, and report as the unconfined compressive stress, \(\sigma_c \). Whenever it is considered necessary for proper interpretation, include the graph of the stress-strain data as part of the data reported.

9.5 If both the intact and remolded compressive strengths are measured, determine the sensitivity, \(S_f \), as follows:

\[S_f = \frac{q_{\text{intact}}}{q_{\text{remolded}}} \]

10. Report: Test Data Sheet(s)/Form(s)

10.1 The methodology used to specify how data are recorded on the test data sheet(s)/form(s), as given below, is covered in 1.5.

10.2 Record as a minimum the following general information (data):

10.2.1 Identification and visual description of the specimen, including soil classification, symbol, and whether the specimen is intact, remolded, reconstituted, etc. Also include specimen identifying information, such as project, location, boring number, sample number, depth, etc. Visual descriptions shall be made in accordance with Practice D2488.

10.3 Record as a minimum the following test data:

10.3.1 Initial dry density and water content (specify if the water content specimen was obtained before or after shear, and whether from trimmings or the entire specimen).

10.3.2 Degree of saturation (Note 8), if computed,

Note 8—The specific gravity determined in accordance with Test Method D854 is required for calculation of the degree of saturation.

10.3.3 Unconfined compressive strength and shear strength,

10.3.4 Average height and diameter of specimen,

10.3.5 Height-to-diameter ratio,

10.3.6 Average rate of strain to failure, %,

10.3.7 Strain at failure, %,

10.3.8 Liquid and plastic limits, if determined, in accordance with Test Method D4318.

10.3.9 Failure sketch or photo,

10.3.10 Stress-strain graph, if prepared,

10.3.11 Sensitivity, if determined,

10.3.12 Particle size analysis, if determined, in accordance with Test Method D6913, and

10.3.13 Remarks—Note any unusual conditions or other data that would be considered necessary to properly interpret the results obtained, for example, slickensides, stratification, shells, pebbles, roots, or brittleness, the type of failure (that is, bulge, diagonal shear, etc.).

11. Precision and Bias

11.1 Precision—Criteria for judging the acceptability of test results obtained by this test method on rigid polyurethane foam (density about 0.09 g/cm³) is given in Table 1. These estimates of precision are based on the results of the interlaboratory program conducted by the ASTM Reference Soils and Testing Program. The precision estimates will vary with the material/soil type being tested, and judgement is required when applying these estimates to soil.

11.1.1 The data in Table 1 are based on three replicate tests performed by each test laboratory. The single-operator and multilaboratory standard deviation shown in Table 1, Column 4, were obtained in accordance with Practice E691. Results of two properly conducted tests performed by the same operator

Note 9—Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D18-1014. Contact ASTM Customer Service at service@astm.org.

TABLE 1 Summary of Test Results from Each Laboratory
(Compressive Strength Data on Rigid Polyurethane Foam (density about 0.09 g/cm³))

<table>
<thead>
<tr>
<th>Number of</th>
<th>Test Parameter</th>
<th>Average Value</th>
<th>Standard Deviation</th>
<th>Acceptable Range of Two Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triplet Test Laboratories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Strength, kPa</td>
<td>989</td>
<td>42</td>
<td>120</td>
</tr>
<tr>
<td>22</td>
<td>Strain, %</td>
<td>4.16</td>
<td>0.32</td>
<td>0.9</td>
</tr>
<tr>
<td>Multilaboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Strength, kPa</td>
<td>989</td>
<td>53</td>
<td>150</td>
</tr>
<tr>
<td>22</td>
<td>Strain, %</td>
<td>4.16</td>
<td>0.35</td>
<td>1.0</td>
</tr>
</tbody>
</table>

A Strength = peak compressive stress and strain = axial strain at peak compressive stress.
B The number of significant digits and decimal places presented are representative of the input data. In accordance with Practice D6026, the standard deviation and acceptable range of results can not have more decimal places than the input data.
C Standard deviation is calculated in accordance with Practice E691 and is referred to as the 1σ limit.
D Acceptable range of two results is referred to as the 2σ limit. It is calculated as 1.96\(\sqrt{\frac{2}{n}}\) t.s., as defined by Practice E177. The difference between two properly conducted tests should not exceed this limit. The number of significant digits/decimal places presented is equal to that prescribed by this test method or Practice D6026. In addition, the value presented can have the same number of decimal places as the standard deviation, even if that result has more significant digits than the standard deviation.
on the same material, using the same equipment, and in the shortest practical period of time should not differ by more than the single-operator $d2_s$ limits shown in Table 1, Column 5. For definition of $d2_s$ see Footnote D in Table 1. Results of two properly conducted tests performed by different operators and on different days should not differ by more than the multilaboratory $d2_s$ limits shown in Table 1, Column 5.

11.2 Bias—There is no accepted reference value for this test method, therefore, bias cannot be determined.

12. Keywords

12.1 cohesive soil; sensitivity; strain-controlled loading; strength; stress-strain relationships; unconfined compression
X1.1 See Fig. X1.1.

UNCONFINED COMPRESSION TEST—UI

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
<th>Job No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boring No. | Sample No. | Depth/Elev. |

Description of Sample

Proving Ring No. | Apparatus No. |

Water Content Determination

<table>
<thead>
<tr>
<th>Tare No.</th>
<th>Wt. Specimen Wet + Tare</th>
<th>Wt. Specimen Dry + Tare</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Wt. Water</th>
<th>Wt. Tare</th>
<th>Wt. Specimen Wet</th>
<th>Wt. Specimen Dry</th>
</tr>
</thead>
</table>

Water Content % Dry Wt. at 105°C %

Wet Density

Dry Density

Unconfined Compressive Strength

<table>
<thead>
<tr>
<th>Initial Diameter</th>
<th>Initial Area</th>
<th>Initial Height</th>
<th>Initial Volume</th>
</tr>
</thead>
</table>

Specific Gravity

Stress = \[
\frac{\text{Load}}{\text{Corr. Area}}
\]

Test Data

<table>
<thead>
<tr>
<th>Elapsed Time-min</th>
<th>Load Dial</th>
<th>Axial Load</th>
<th>Strain Dial</th>
<th>Total Strain</th>
<th>Unit Strain</th>
<th>Corrected Area</th>
<th>Stress</th>
</tr>
</thead>
</table>

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

|-----------------|-----------|------------|-------------|--------------|-------------|-----------------|--------|

Type of Sample

Attach a photo or sketch of the specimen after failure to this form

Strain Rate %/Min

Remarks

FIG. X1.1 Example Data Sheet
SUMMARY OF CHANGES

Committee D18 has identified the location of selected changes to this standard since the last issue (D2166 – 06) that may impact the use of this standard. (Approved May 15, 2013.)

(1) Updated units of measurement in 1.6 and throughout.
(2) Revised Sections 3 and 10.
(3) Added Section 4.
(4) Revised 6.1 to be consistent with 9.3.
(5) Added reference to D7263 in Section 2.1 and 7.2.
(6) Corrected 9.2 for consistency.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).